- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources5
- Resource Type
-
0005000000000000
- More
- Availability
-
41
- Author / Contributor
- Filter by Author / Creator
-
-
Li, Xigao (5)
-
Nikiforakis, Nick (5)
-
Rahmati, Amir (4)
-
Amin Azad, Babak (2)
-
Muzammil, Muhammad (1)
-
Pitumpe, Abisheka (1)
-
Yepuri, Anurag (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available May 1, 2026
-
Li, Xigao; Rahmati, Amir; Nikiforakis, Nick (, Network and Distributed System Security (NDSS) Symposium)
-
Li, Xigao; Yepuri, Anurag; Nikiforakis, Nick (, Proceedings of the Network and Distributed System Security Symposium (NDSS))
-
Li, Xigao; Amin Azad, Babak; Rahmati, Amir; Nikiforakis, Nick (, Proceedings of the ACM Web Conference (WWW))
-
Li, Xigao; Amin Azad, Babak; Rahmati, Amir; Nikiforakis, Nick (, Proceedings of the 42nd IEEE Symposium on Security and Privacy)null (Ed.)As the web keeps increasing in size, the number of vulnerable and poorly-managed websites increases commensurately. Attackers rely on armies of malicious bots to discover these vulnerable websites, compromising their servers, and exfiltrating sensitive user data. It is therefore crucial for the security of the web to understand the population and behavior of malicious bots. In this paper, we report on the design, implementation, and results of Aristaeus, a system for deploying large numbers of honeysites, i.e., websites that exist for the sole purpose of attracting and recording bot traffic. Through a seven-month-long experiment with 100 dedicated honeysites, Aristaeus recorded 26.4 million requests sent by more than 287K unique IP addresses, with 76K of them belonging to clearly malicious bots. By analyzing the type of requests and payloads that these bots send, we discover that the average honeysite received more than 37K requests each month, with more than 50% of these requests attempting to brute-force credentials, fingerprint the deployed web applications, and exploit large numbers of different vulnerabilities. By comparing the declared identity of these bots with their TLS handshakes and HTTP headers, we uncover that more than 86.2% of bots claiming to be Mozilla Firefox and Google Chrome are lying about their identity and are instead built on HTTP libraries and command-line tools.more » « less
An official website of the United States government

Full Text Available